Extensions 1→N→G→Q→1 with N=C22≀C2 and Q=D7

Direct product G=N×Q with N=C22≀C2 and Q=D7
dρLabelID
D7×C22≀C256D7xC2^2wrC2448,1041

Semidirect products G=N:Q with N=C22≀C2 and Q=D7
extensionφ:Q→Out NdρLabelID
C22≀C21D7 = C24⋊D14φ: D7/C7C2 ⊆ Out C22≀C2564C2^2wrC2:1D7448,566
C22≀C22D7 = C242D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2:2D7448,1042
C22≀C23D7 = C243D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2:3D7448,1043
C22≀C24D7 = C24.33D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2:4D7448,1044
C22≀C25D7 = C24.34D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2:5D7448,1045
C22≀C26D7 = C24.35D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2:6D7448,1046
C22≀C27D7 = C244D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2:7D7448,1047
C22≀C28D7 = C24.36D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2:8D7448,1048
C22≀C29D7 = C24.56D14φ: trivial image112C2^2wrC2:9D7448,1039

Non-split extensions G=N.Q with N=C22≀C2 and Q=D7
extensionφ:Q→Out NdρLabelID
C22≀C2.1D7 = C24⋊Dic7φ: D7/C7C2 ⊆ Out C22≀C2564C2^2wrC2.1D7448,93
C22≀C2.2D7 = C24.32D14φ: D7/C7C2 ⊆ Out C22≀C2112C2^2wrC2.2D7448,1040

׿
×
𝔽